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1. RESEARCH OBJECTIVES

The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic
processes which impact our understanding of stratospheric ozone. The main emphasis of this
work is on measuring rate coefficients and product channels for reactions of HO, and NO, species
in the temperature range 200 K to 240 K relevant to the lower stratosphere. Other areas of study
have included infrared spectroscopic studies of the HO5 radical, measurements of OH radical
reactions with alternative tfluorocarbons, and determination of the vapor pressures ot nitric acid
hydrates under stratospheric conditions. The results of these studies will improve models of
stratospheric ozone chemistry and predictions of perturbations due to human influences.



2. RESULTS FROM NASA SUPPORTED PROGRAM 1992-1995

Over the past three years we have focussed our etforts in three separate research areas:
1) spectroscopic and kinetic studies of the HO, radical, 2) the measurement of rate constants for
the destruction of several potential alternative freon compounds by the OH radical and an
assessment of the corresponding ozone depletion potentials and atmospheric lifetimes for these
species, and 3) the determination of phase diagrams for nitric acid hydrates which are central to our
understanding of the formation of polar stratospheric clouds. In addition, Dr. Kolb has
participated in NASA's panel for Data Evaluation helping to prepare two versions of the JPL
publication "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling". We
shall discuss our work in each of these areas separately below.

2.1 Spectroscopy and Kinetics of the HO, Radical
HO, Quantitative Spectroscopy Studies

The hydroperoxyl radical (HO,) participates in the formation and destruction of ozone in
both the troposphere and the stratosphere. Together with the hydroxyl radical (OH) it forms
catalytic cycles which result in the oxidation of compounds released at the surface of the earth and
thus provides the major cleansing mechanism for hydrocarbons and manmade pollutants in the
lower atmosphere. There is, therefore, great interest in direct measurements of the concentration
and distribution of HO, radical throughout the atmosphere. Infrared spectroscopy provides a
specific and sensitive method for detecting the HO, radical in laboratory studies and is a potential
method for direct measurements in the stratospherc. We have augmented our previous work on
line position and line strengths by measuring the pressure broadening coefficient in air for infrared
transitions of HO, in the v, vibrational band around 1400 cm-1. This work has been published in
the Journal of Molecular Spectroscopy [Nelson and Zahniser, 1994a}.

The HO, was made at atmospheric pressure from the H + O, association reaction. The
HO, was sampled by a fast flow reduced pressure multipass absorption cell using an astigmatic off
axis resonator. The optical pathlength was 100 meters with 182 passes. A survey spectrum of
HO, spanning 1410.9 to 1411.4 cm-1 is shown in the upper panel of Figure 1. An HO; resolved
doublet, coincident doublet, and resolved quartet are seen with peak absorptions of ~2-5%. Also
shown is the etalon trace used to calibrate the frequency scale for the pressure broadening
measurements. The bottom panel of Figure | shows the result of a fit carried out on the spectrum
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Figure 1. HO, Absorption Spectra Obtained in 100 Meter Pathlength Fast Response Flow Cell

of the coincident doublet (919 < 8;g F},F2) obtained at 16 Torr. Approximately 1/2 of the
linewidth is Gaussian (due to Doppler and instrumental broadening) and ~1/2 is Lorentzian (due to
pressure broadening). All of the broadening measurements reported in this work are based on this
coincident doublet at 1411.18 cm-1. The pressure was varied by throttling the pump. Spectra
were taken at pressures from 5-80 Torr and fit to a Voigt profile using a nonlinear least squares fit
as described above. In these fits the doublet was treated as a singlet since the two components of
the doublet differ in frequency by only 0.0004 cm-!. This splitting was completely unobservable
even at low pressure, being dominated by the combined effects of Doppler broadening (C'ywrm =
0.0015 cm-1) and the finite laser linewidth (Crwiym ~ 0.0019 cm-1). The laser linewidth appears
to be largely Gaussian in nature and is deduced from the observed spectral linewidth

(CHwhm = 0.0024 cm-1) at low pressure. This excess Gaussian broadening is attributed to the
laser linewidth. The pressure dependent Voigt protiles were fit with the peak position, peak height



and Lorentzian halfwidth tloated and the Gaussian halfwidth fixed at 0.0024 cm-!. The reported
pressure broadening coetticient is relatively insensitive to the value chosen for the Gaussian
haltwidth.

Our results are summarized in Figure 2 where we plot the Lorentzian component of the
observed linewidth versus the cell pressure both for room air and dry air. The error bars in
Figure 2 are the 95% confidence limits derived from the random errors in the nonlinear least
squares tits. Since there is no significant ditfference between the two data sets, they were fit
together. This is not surprising since the water vapor mixing ratio in the cell was only 2.7 parts
per thousand. The eleven observed haltwidths were ftit to a straight line using a least squares fit
weighted by the inverse of the plotted uncertainties. The slope of the fit line implies a broadening
coefficient of 0.098 £ 0.007 cm-! atm-! (HWHM) for the gas mixture. The Lorentz halfwidth at
zero pressure is determined as 0.0002 £ 0.0002 cm-1. The reported uncertainties represent 95%
confidence limits with respect to random errors. The mixture employed was 86.5% air, 13% He
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Figure 2. HO, Air Broadened Linewidth Measurements in a Mixture of 86.5% air,
13.5% Helium and 0.5% Hydrogen
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and 0.5% H. It was difficult to vary this mixture substantially while maintaining sutficient HO,
signal tor pressure broadening studies. However. the He and H; concentrations were small
enough that we can still report a fairly precise air broadening coefficient. We ignore the H,
pressure broadening since H» is only present in trace quantities. To correct tor the presence of He
we note that the weakly interacting He atom is Iikely to be a much less efficient line broadener than
either N» or O,. In tact, the air broadening coefficients of OH rotational transitions are ~5x larger
than the He broadening coefticients. We theretore assume that the He broadening coefficient with
HO, is one third of the air broadening coetficient und we increase our reported uncertainties in the
air broadening coetficients to allow for He broadening coefficients between 0 and 2/3 of the air
broadening values. This implies an air broadening coefficient of 0.107 £0.009 cm-! atm-1 for the
919 < 818 F1,F, doublet (1411.180 cm-1) in the v band.

The line broadening coetticient reported in this work has direct implications for the design
and interpretation of atmospheric monitoring experiments for the hydroperoxyl radical. The two
obvious implications are: 1) the broadening coefticient determines the maximum line center
absorption for a given line strength, and 2) it determines the optimal pressure for reduced pressure
sampling in the infrared absorption approach.

Further work on the HO, radical should certainly explore the rotational and vibrational
dependence of the broadening coefficients. In addition, measurement of the temperature
dependence of theses coefficients will be very important since lower stratospheric and upper
tropospheric temperatures are often 200 K or lower. Direct monitoring of the HO, radical in these
environments will potentially require a large temperature correction to the room temperature
broadening coefficients.

HO, Radical Reaction Kinetics

The reaction of HO, with ozone is one of the most important ozone controlling reactions in
the lower stratosphere. The precise determination of the rate of this reaction at temperatures
characteristic of the lower stratosphere is therefore very important. The goal of our work in this
area is to measure the rate of this reaction at temperatures approaching 190 K. Our measurement
technique is the discharge flow method using fast sweep tunable diode lasers for detection of the
HO, radicals in excess ozone. The study of this reaction is motivated by and complicated by the
fact that it is part of a catalytic cycle which reforms HO, while eliminating ozone:



HO,+ 0y --> OH + 2 O, (R1)
OH + 03 --> H02 + 02 (R2)

net: 2 03 -> 30,

We have used isotopic labelling to prevent the seccond reaction from reforming the radical reactant
of the first reaction. That is, we study the rate of HQ, + O3 (where Q = 130y, HQ, is formed in
an association reaction between H atoms and Q, The difficulty with this approach is that the
reactants are quite expensive and an extra burden is placed on detection sensitivity. We have
therefore overcome two major challenges in this study: 1) the difficulty of high radical wall losses
at the colder temperatures and 2) the need for very high detection sensitivity.

Previous studies have been limited in their temperature range by severe HO, wall loss at
temperatures below 240 K. Each of these studies employed either a CH3OH source for HOp ora
radical scavenger for the removal of OH or both. In this work, we have avoided using these
condensible species and have had much less difficulty with radical wall loss, measuring wall loss
rates as small as 6 s'! at 219 K. We have also extended our detection limit for HO, radicals by a
factor of ten by using a set of astigmatic off-axis resonator mirrors which provide a longer
absorption path in a smaller sampling volume. We are currently using nearly 400 passes of the
diode laser to detect the HO, radicals. With a high quality single mode laser this should translate to
an HO, detection limit of ~2 x 108 molecules cm-3. Unfortunately, we have had difficulty of late
obtaining a high quality single mode HO, laser. We have made some kinetic measurements with a
multimode laser at reduced sensitivity (detection limit ~ 10 x 108 molecules cm-3). Our results to
date are summarized in Figure 3, an Arrhenius plot for the HO, + ozone reaction. This plot shows
our rate measurements together with those of previous workers. We have extended the
temperature range of the rate measurements to almost 200 K, but the precision of the measurements
1s not yet good enough to distinguish between the linear Arrhenius plot of Zahniser and Howard
[1980] (solid line) and the curved plot of Sinha, Lovejoy and Howard [1987] (dashed curve).

We are currently implementing three measures which will provide the sensitivity required to
complete these experiments. First we are attempting to procure a single mode HO, laser from two
sources. Second, we have ordered a pair of narrow bandwidth high reflective astigmatic mirrors
which will allow ~720 passes of the infrared laser across the flow tube. We expect these two
improvements to lower our HO5 detection limit to ~ 1 x 108 molecules cm-3 in one minute. Third,
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Figure 3. Arrhenius plot for the reaction of HO, radical with ozone.

we have ordered isotopically labelled HQQH which will be used to produce HQj; via F atom
reaction. This source is far more efficient than the H + Q, source and thus produces HQ; at a
substantially reduced cost allowing longer signal averaging. We have recently verified that this
source works at stratospheric temperatures without introducing additional HO, wall loss. With
these improvements nearly in place, we plan to complete the rate measurements in the next few
months.

Another task performed under this contract was the preparation of an article for the Journal
of Physical Chemistry [Nelson and Zahniser, 1994b] describing our measurements of the
branching ratio of the HO, + ozone reaction. This article detailed work performed under a
previous NASA contract. The study investigated the fraction of OH produced via hydrogen
abstraction versus that produced via oxygen abstraction as a function of temperature. The
conclusion of the work is that H atom abstraction is the dominant pathway from room temperature
down to stratospheric temperatures and that variation in this aspect of the reaction mechanism does
not account for the observed curvature in the HO, + O3 Arrhenius plot.

The reaction of HO, + NO is also being studied using the discharge tlow technique and
infrared tunable diode laser absorption detection of HO,. Concentrations of HO; are well below



the limit for interterences from second order processes. Our initial results. k(T = 294) =
(7.5% 1.5) x 10-12 ¢cm3 molecule-! s-1 and k(T = 263) = (10.5 £2.0) x 1012 cm3 molecule™! s°1,
are in good agreement with previous measurements of Howard [1979].

2.2 OH Reaction R with Alternative Halocarbons

Hydrogen-containing halocarbons are being used as alternatives for fully halogenated
compounds since their higher reactivity with OH radicals in the lower atmosphere limits their
transport to the stratosphere and their resultant degradation of the ozone layer. The halons are
widely used as fire extinguishers to exploit the effective combustion suppression observed with
many bromine containing molecules. It is theretore important to develop alternatives for fire
suppression which are less etfective at delivering bromine to the stratosphere. The compounds
studied in this work are examples of two distinct approaches to this problem. CF3CFHCF; has
been demonstrated as a tire fighting agent and since it contains no bromine or chlorine it is thought
to pose no threat to stratospheric ozone. Unfortunately, CF3CFHCF; is not an ideal fire
suppressant [Baldwin et al., 1992] since it is less efficient than the halons and has a propensity to
produce undesirable quantities of HF when applied to fires. In addition, CF;CFHCFj is a potential
greenhouse gas whose release could contribute to global warming. The second approach to fire
suppression alternatives is exemplified by CF3CH,Br. Hydrogenated halons such as CF3CH,Br
contain both bromine atoms capable of fire suppression and hydrogen atoms allowing the efficient
tropospheric removal of the parent compound. However, with the high efficiency of bromine
catalyzed ozone destruction, tropospheric lifetimes on the order of a few months will likely be
necessary to permit the widespread use of these compounds.

The second order rate constants for each reaction are displayed in Figure 4 as a function of
temperature, where we have plotted In (kI versus 1/T. These Arrhenius plots are linear,
indicating that the temperature dependent rate constants are well represented by:

Kl=Aexp[-E/(RT)] (D

Weighted linear least squares fits of In (k) versus 1/ T were used to determine A and E. We
report A = (3.7 £1.1) x 10-13 ¢cm3 molecule-! s-! and E/R = 1615 £190 K for OH + CF3;CFHCF;
and A = (1.39 £0.6) x 10-12 cm3 molecule'! s-1 and E/R = 1350 £195 K for OH + CF3CH,Br.
The random error uncertainties in A and E were estimated from the deviation of the kI values from
the fit. These uncertainties were convolved with a 10% systematic error uncertainty to yield the
total reported uncertainties in A and E with a ~95% confidence limit. The uncertainty in kI as
calculated from Eq. (1) is estimated to be ~10% over the measured temperature range. The
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uncertainty in kl! over the wider range of T = 250 - 400 K is conservatively reported as less than or
equal to 20%. This estimate is based upon the uncertainty in our determination of E.

The temperature dependent rate constants measured in this work are required to calculate
the tropospheric lifetimes of CF3CFHCF3 and CF3CH,Br with respect to removal by reaction
with OH radical. Following the approach of Prather and Spivakovsky [1990], we use the OH rate
constants at 277 K to estimate lifetimes. The tropospheric lifetimes,<,, are calculated from the OH
reaction rates, ky, via the simple procedure of scaling from the methyl chloroform tropospheric
lifetime of Prinn et al. [1995] and the OH reaction rate constant [Talukdar et al., 1992] .The
resulting tropospheric lifetimes (with respect to OH reaction) for CF3CFHCF; and CF3CH;Br are
42 years and 4.4 years, respectively.



For both compounds studied in this work. the atmospheric lifetimes will be nearly equal to
the tropospheric lifetimes, most likely within 10%. We expect photolysis and O(ID) lifetimes of
many, many centuries for CF3CFHCF5 and we estimate an atmospheric lifetime equal to its
tropospheric lifetime of 42 years. For CF3CH,Br. the tropospheric lifetime 1s so short that only a
very rapid stratospheric process could significantly aftect the atmospheric lifetime. Photolysis is
the only obvious possibility. We expect the stratospheric lifetime of CF3CH,Br with respect to
photolysis to be roughly equal to the stratospheric litetime of CF3Br (65 years, [Burkholder et al.,
1991]). This implies an atmospheric lifetime ot 4.1 years for CF3CH,Br.

The steady state ozone depletion potential (ODP) for CF3CH;Br can be estimated from its
atmospheric lifetime tollowing the empirical approach of Solomon et al. [1992]. The steady state
globally averaged ozone depletion potential for a halon compound may be calculated as:

ODP = ('tx / TCFC-1 ]) X (Mcpc_“ / Mx) X (kx/ 3) X (2)

where 7, is the atmospheric lifetime of the halon, Tcgc.;; is the atmospheric lifetime of CFC-11
(taken as 55 years [WMO, 1991]), M, and Mcgc.;; are the molecular weights of the species, ky is
the number of Br atoms in the halon and o is an efficiency factor which quantifies the relative
effectiveness for ozone destruction of free bromine compared to free chlorine. The parameter o is a
function of altitude and the free chlorine concentration. A value of 40 has been recommended as a
global average [WMO, 1991] and is used here. It should be noted that this factor is quite uncertain
and applies in an average sense to the present polar stratosphere. The resulting ozone depletion
potential for CF3CHyBr is 0.84 with an overall uncertainty of approximately a factor of two. This
ODP is far smaller than those of halon-1301 (ODP ~16) and halon-1211 (ODP ~4), [WMO, 1991]
which have been used widely as fire suppression agents. This work is published in Geophysical
Research Letters [Nelson et al., 1993].

In addition to the alternative halon work described above, we have recently completed a
series of OH reactions with several HFC species. Room temperature reaction rates with OH were
measured for six fluoropropanes, one fluorobutane and one fluoropentane. High purity samples of
these species were provided by Allied Signal Corp. who also partially sponsored this work. The
room temperature reaction rates for these species are presented in Table 1. The uncertainties in
these values are typically 10-15% including potential systematic errors. The measured reaction
rates vary by a factor of ~100 and show the dramatic deactivation associated with F substitution.

In addition, the temperature dependence for the reaction of OH with CF3CH,CF,CH,CF3 was
measured by measuring k at 5 temperatures between 278 and 354 K. The data is fit well by an
Arrhenius expression with A = (1.28 40.7) x 10-12 cm3 molecule-! s-! and E/R = 1833 £250 K.
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A manuscript describing our measurement of thesc and OH reaction rates has been published
recently [Nelson et al.. 1995].

Table 1 - OH Room Temperature Reaction Rates with Several HFC's

HFC - Kexp X 1015 (cm3 molecule-! s1)
CHF, CHF CHF, 16.0
I CF, CH, CF, 0.57
CF; CH, CH, 42.
CF; CHF CHF, 5.3
CF; CH, CHF, 6.6
CF; CHF CH,F 14.8
CF; CH, CH, CF; 7.0
| CF; CH, CF, CH, CF; 2.62

2.3 Thermodynamic Studies of Nitric Acid Hydrates at Stratospheric Temperatures

The importance of heterogeneous chemical reactions on stratospheric aerosol surfaces has
been vividly demonstrated by measurements and models of the polar stratosphere. We have
determined the thermodynamic parameters for nitric acid mono-, di-, and tri- hydrates by vapor
pressure measurements of water and nitric acid in equilibrium with the solid phases using tunable
diode laser spectroscopy. Our experiments indicate that nucleation and persistence of the
metastable HNO3-2H,0O may be favored in polar stratospheric cloud over HNO5-3H,O even
though the later is thermodynamically more stable under typical stratospheric conditions of
temperature, water vapor and nitric acid vapor. The nitric acid hydrate studies are being conducted
in collaboration with S. Wofsy and L. Fox from Harvard University. The results of this initial
study have been published in Science [Worsnop et al., 1993].

We have continued these studies of nitric acid hydrates relevant to polar stratospheric cloud
formation by investigating mixtures with sulfuric acid. Formation of crystalline phases of HySOy,
HNO; and H,O were studied at stratospheric temperatures and vapor pressures. Freezing of

11



supercooled solutions began at < 200 K by crystallization of x *H,SO4 * HNO3 « H,O, where x is
presently undetermined, followed by a progression of metastable phases: [H»SO4 ¢ HyO +

x * HrSO4 * HNOj3 * H,0 + solution] —(fast) [H,SO4 ¢ 4H,O + H;SO4 * 6.5H,0 + HNO; »
2H,0] —(slow) [H7SOy4 * 4H,0 + HySO4 ¢ 6.5H>O + HNO; * 3H,0]. Metastable HNOy ¢
3H,0 formed in some experiments. Large particles are readily produced from metastable phases,
providing a mechanism for removal of HNO3. Mixed crystals partially melted at 200 K, forming
[HpSO4 * 4H5O + ternary solution], a potentially important process in the arctic polar vortex.

This work has been partially funded by the NASA High Speed Research Program and the
National Science Foundation in addition to the NASA Upper Atmospheric Research Program. A
publication detailing this work has appeared in Science [Fox et al., 1995].

2.4 NASA Data Evaluation Panel Activi

During our current contract C.E. Kolb has served on NASA's Panel for Data Evaluation as
the panel's lead member responsible for heterogeneous processes. Due to his efforts the
Heterogeneous Chemistry section of the biennial review, Chemical Kinetics and Photochemical
Data for Use in Stratospheric Modeling, first introduced in 1990, has been completely revised and
significantly expanded in both the tenth [DeMore et al, 1992] and eleventh [DeMore et al., 1994]
editions. The Heterogeneous Chemistry section now includes three data tables covering Mass
Accommodation Coefficients, Gas/Surface Reaction Probabilities, and Henry's Law Constants for
Gas-Liquid Solubilities, as well as text and extensive notes presenting background and guidance
for using the tables. The eleventh edition of the Heterogeneous Chemistry section presents and
evaluates the work for over eighty new or revised archival publications beyond the tenth edition.

2.5 Archival Publications Prepared Under the Current Contract
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